Acta Cryst. (1995). C51, 149-151
4a,6,7,8a-Tetrahydro[1,3]dithiolo[4',5':5,6]-[1,4]dithiino[2,3-b][1,4]dioxine-2-thione. A Precursor for the Preparation of New Donor Molecules and Derived Conducting Cation Radical Salts

Christophe Faulmann and Patrick Cassoux
Laboratoire de Chimie de Coordination, CNRS, 205, Route de Narbonne, 31077 Toulouse CEDEX, France

Alexander I. Kotov and Eduard B. Yagubskii
Institute of Chemical Physics at Chernogolovka, Russian Academy of Sciences, 142432 Chernogolovka MD, Russia
(Received 9 April 1994; accepted 27 June 1994)

Abstract

The title molecule $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}_{5}\right)$ contains three side-byside five- or six-membered sulfur- or oxygencontaining rings. Due to the saturated character of the external oxygen-containing ring, the title molecule is severely bent with a dihedral angle of 97° along the $S-S$ axis of the central ring.

Comment

Since the discovery of superconductivity in bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) salts (Williams et al., 1991), much work has been devoted to the synthesis of new π-donor molecules derived from BEDT-TTF, (1). The title molecule (2) has been used for the preparation of one such new organic donor, 4,5;4', 5^{\prime}-bis(1,4-dioxane-2,3-diyldithio)tetrathiafulvalene, hereafter abbreviated as BDDT-TTF, (3) (Kotov, Faulmann, Cassoux \& Yagubskii, 1994).

© 1995 International Union of Crystallography
Printed in Great Britain - all rights reserved

The BDDT-TTF donor molecule, which can be used for the preparation of conducting cation radical salts, is of special interest due to (i) the retention of the essential electronic structural features and solubility of the BEDT-TTF parent molecule, together with (ii) the increase in the number of peripheral heteroatoms (which may result in additional side-byside inter-cation interactions), and (iii) the noncoplanarity of the 1,4 -dioxane rings with respect to the central BEDT-TTF molecular framework (which should hinder the formation of dense face-to-face stacked packing).

The planarity of the $\mathrm{C}_{3} \mathrm{~S}_{5}$ fragment of (2), in contrast with the rest of the molecule, and the angle of 97.1 (1) $)^{\circ}$ between this fragment and the rest of the molecule, is clearly shown in Fig. 1. The largest deviation in the $\mathrm{C}_{3} \mathrm{~S}_{5}$ plane is less than $0.03 \AA(\mathrm{~S} 3)$. Although the four C atoms ($\mathrm{C} 4-\mathrm{C} 7$) of the dioxane ring also form a plane (deviation less than $0.015 \AA$), the $\mathrm{C}_{4} \mathrm{O}_{2}$ ring adopts a chair conformation with the two O atoms at $0.578(6)(\mathrm{Ol})$ and $-0.645(5) \AA$ (O2) from the mean plane of the C atoms. In the $\mathrm{C}_{5} \mathrm{~S}_{5}$ moiety the intramolecular distances are comparable to those found in 5,6 -dihydro-5,6-dimethyl-1,3-dithiolo[4,5-b][1,4]dithiine-2-thione, $\quad \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~S}_{5}$ (it should be noted, however, that the structure of $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~S}_{5}$ was solved by equalizing chemically equivalent intramolecular distances) (Wallis \& Dunitz, 1988).

Fig. 1. Molecular structure of the title compound. Non-H atoms are represented as 50% probability displacement ellipsoids.

The dihedral angles between the $\mathrm{S} 2-\mathrm{C} 2-\mathrm{S} 4$ and C2-S4-C4 planes, and the S3-C3-S5 and $\mathrm{C} 3-\mathrm{S} 5-\mathrm{C} 5$ planes, are very large (ca 139 and 160°, respectively). In spite of this distortion from planarity, molecules of (2) stack along the [010] direction (Fig. 2). When considering only the planar $\mathrm{C}_{3} \mathrm{~S}_{5}$ fragment, the distances between two adjacent planes is quite short ($3.58 \AA$). However, as the stacking direction is not perpendicular to the $\mathrm{C}_{3} \mathrm{~S}_{5}$ fragment, there are no $\mathrm{S} \cdots \mathrm{S}$ contacts shorter than the sum of
the van der Waals radii. The shortest intrastack distances between two S atoms are 3.83 (S3…S5') and $3.86 \AA\left(\mathrm{~S} 3 \cdots 1^{\prime}\right)$.

Fig. 2 Stacking of the title molecule along the b axis.

Experimental

The title compound (2) was synthesized by cycloaddition of 1,4-dioxine to oligomeric 1,3-dithiole-2,4,5-trithione ($\left.\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{x}$ (Neiland, Kacens \& Kreicberga, 1989a,b) in 1,4-dioxane at 363 K (Kotov, Faulmann, Cassoux \& Yagubskii, 1994).
Crystal data
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}_{5}$
$M_{r}=282.4$
Monoclinic
$P 2{ }_{1}$
$a=9.631$ (2) \AA
$b=5.491$ (1) \AA
$c=9.895$ (1) \AA
$\beta=92.04$ (1) ${ }^{\circ}$
$V=522.9(2) \AA^{3}$
$Z=2$
$D_{x}=1.79 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.71, T_{\text {max }}=0.99$
1121 measured reflections
1033 independent reflections 821 observed reflections
$[I \geq 3 \sigma(I)$]

Refinement

$\begin{array}{ll}\text { Refinement on } F & (\Delta / \sigma)_{\text {max }}=0.1 \\ R=0.039 & \Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3} \\ w R=0.045 & \Delta \rho_{\min }=-0.37 \AA^{-3}\end{array}$
$R_{\text {int }}=0.0683$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 6$
$l=-11 \rightarrow 11$
3 standard reflections frequency: 120 min intensity variation: 0.2%
$S=0.89$
821 reflections
91 parameters
H -atom parameters not refined
$w=1 / \sigma^{2}(F)$

Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {iso }}$ for C atoms; $B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathrm{a}_{j}$ for others.				
	x	y	z	$B_{\text {iso }} / B_{\text {eq }}$
S1	1.1150 (2)	0.6286 (6)	0.2646 (2)	3.94 (5)
C1	0.9967 (9)	0.419 (2)	0.2414 (8)	3.1 (2)
S2	0.9116 (2)	0.360	0.0886 (2)	3.20 (4)
S3	0.9417 (2)	0.2310 (5)	0.3703 (2)	3.50 (4)
C2	0.8109 (8)	0.119 (2)	0.1425 (7)	2.6 (1)
C3	0.8228 (8)	0.062 (2)	0.2718 (8)	2.8 (2)
S4	0.6945 (2)	-0.0189 (5)	0.0254 (2)	3.02 (4)
S5	0.7367 (2)	-0.1712 (5)	0.3573 (3)	4.25 (5)
C4	0.5521 (8)	-0.057 (2)	0.1348 (7)	2.6 (1)
C5	0.5810 (8)	-0.240 (2)	0.2486 (8)	2.9 (2)
01	0.4668 (6)	-0.265 (1)	0.3305 (5)	3.2 (1)
O 2	0.5075 (5)	0.166 (1)	0.1857 (5)	2.7 (1)
C6	0.3856 (8)	0.134 (2)	0.2627 (8)	3.3 (2)
C7	0.4163 (9)	-0.038 (2)	0.3775 (9)	3.7 (2)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{Cl}$	1.630 (9)	S4-C4	1.790 (8)
$\mathrm{Cl}-\mathrm{S} 2$	1.725 (8)	S5-C5	1.853 (8)
C1-S3	1.737 (9)	C4-C5	1.53 (1)
S2-C2	1.735 (9)	$\mathrm{C} 4-\mathrm{O} 2$	1.40 (1)
S3-C3	1.744 (9)	$\mathrm{C} 5-\mathrm{O} 1$	1.397 (9)
C2-C3	1.32 (1)	$\mathrm{Ol}-\mathrm{C} 7$	1.42 (1)
C2-S4	1.756 (8)	O2-C6	1.43 (1)
C3-S5	1.759 (9)	C6-C7	1.50 (1)
$\mathrm{S} 1-\mathrm{Cl}-\mathrm{S} 2$	124.3 (5)	C3-S5-C5	104.8 (4)
S1-C1-S3	123.1 (5)	S4-C4-C5	113.6 (6)
S2-Cl-S3	112.6 (5)	$\mathrm{S} 4-\mathrm{C4}-\mathrm{O} 2$	111.4 (6)
C1-S2-C2	97.3 (4)	C5-C4-O2	111.2 (6)
$\mathrm{C} 1-\mathrm{S3}-\mathrm{C} 3$	96.7 (4)	S5-C5-C4	114.7 (6)
S2-C2-C3	116.7 (7)	S5-C5-O1	108.7 (5)
S2-C2-S4	118.5 (5)	C4-C5-O1	111.6 (7)
C3-C2-S4	124.7 (7)	C5-O1-C7	112.7 (7)
S3-C3-C2	116.6 (7)	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 6$	110.4 (7)
S3-C3-S5	115.5 (5)	$\mathrm{Ol}-\mathrm{C} 7-\mathrm{C} 6$	111.4 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 5$	127.9 (7)	O2-C6-C7	109.8 (7)
C2-S4-C4	97.9 (4)		

Data collection and cell refinement: CAD-4 Express (EnrafNonius, 1992). Programs used to solve structure: SHELXS86 (Sheldrick, 1985) and MolEN (Fair, 1990). Program used to refine structure: MolEN. Program used to produce the molecular graphics: ORTEPII (Johnson, 1976).

This work was supported by a CNRS-Russian Academy of Sciences Collaboration Programme. One of us (AIK) is grateful to the French Ministry of Education for provision of a High-Level Scientist Grant.

Lists of structure factors, anisotropic displacement parameters, \mathbf{H} atom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1109). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Enraf-Nonius (1992). CAD-4 Express. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Kotov, A. I., Faulmann, C., Cassoux, P. \& Yagubskii, E. B. (1994). J. Org. Chem. 59, 2626-2629.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Neiland, O. Y., Kacens, Y. Y. \& Kreicberga, Y. N. (1989a). Zh. Org. Khim. 25, 658-661.
Neiland, O. Y., Kacens, Y. Y. \& Kreicberga, Y. N. (1989b). Chem. Abstr. 111, 194689 K.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Wallis, J. D. \& Dunitz, J. D. (1988). Acta Cryst. C44, 1037-1039.
Williams, J. M., Schultz, A. J., Geiser, U., Carlson, K. D., Kini, A. M., Wang, H. H., Kwok, W.-K., Whangbo, M.-H. \& Schirber, J. E. (1991). Science, 252, 1501-1508.

Acta Cryst. (1995). C51, 151-152

4,6,7,8,9,9a-Hexahydro-11H-pyrido-[1,2-a]thieno[2,3-e][1,3]diazepin-11(10H)one

Josef Kožǐšek, \ddagger Ladislav Ulickýł and Štefan Marchalín§

Faculty of Chemical Technology, Radlinského 9, Slovak Technical University, CS-812 37 Bratislava, Slovakia

ZDIRAD Žák
Department of Inorganic Chemistry, Masaryk University, Kotlărská 2, 61137 Brno, Czech Republic

Bernard Decroix
Laboratoire de Chimie, Université de Havre, 30 rue Gabriel Péri, 76600 Le Havre, France
(Received 10 May 1993; accepted 8 February 1994)

Abstract

The title molecule ($\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$) consists of a sevenmembered diazepine ring fused to a five-membered thiophene ring and a six-membered piperidine ring. The

